2540

Acta Cryst. (1974). B30, 2540

Hydrogen Bond Studies.
XCIL* Disorder in (HCO,);™ and (DCO;);~ Dimers: A Neutron
Diffraction Study of KHCO; and KDCO,
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Three-dimensional single-crystal neutron-diffraction data sets have been collected for KHCO; and
KDCO; at 298 K. Both unit cells are monoclinic, space group P2,/a, containing four formula units. The
cell dimensions are, for KHCO;: a=15-1725 (11), b=>56283 (5), c¢=3-7110 (4) A, B=104-631 (6)°,
V'=306:62 A%; and for KDCOs: a=15-1948 (9), 5=56307 (3), c=3-7107 (3) A, B=104-567 (5)°, V=
307-27 A3. The structures comprise K * ions and centrosymmetric (HCO,)3~ dimers. Contrary to earlier
X-ray findings, the H (and D) atoms of the dimers occupy two possible sites in the hydrogen bonds in
the rough proportions 4:1; the dimers as a whole must therefore also be subject to the same degree of
disordering. The conventional R values for the final refinements of a model in which only the H (and D)
atoms occupy disordered sites are 0-033 and 0-040, respectively. The corresponding O- - -O hydrogen-
bond lengths within the (HCO;);~ and (DCOs);~ dimers are 2:587 (1) and 2:607 (2) A, respectively.

Introduction

An earlier analysis of the results of isotope effect
studies of simple hydrogen-bonded compounds (Thom-
as, 1972) suggested that even simpler systems should
be examined for the effect of isotropic substitution to
be satisfactorily isolated. It was to this end that the
hydrogen-bond situation within the (HCO;)2~ dimers
occurring in KHCO; was studied by X-ray diffraction
methods at both room and low temperatures (Thomas,
Tellgren & Olovsson, 1974). This work appeared to
dispel the earlier suspicion that disorder existed in the
structure (Hamilton & Ibers, 1968). A neutron diffrac-
tion study of KHCO; and KDCO, was therefore
undertaken to obtain precise structural information on
the effect of deuterating a simple hydrogen-bonded
system. As will be seen from the following, the inves-
tigation provided information of a more unexpected
nature.

Crystal data

Potassium hydrogen carbonate, KHCO;. F.W. 100-12.
Monoclinic, P2,/a (equivalent to P2,/c, No. 14), a=
151725 (1)}, b=56283 (5), ¢=3-7110 (4) A, pB=
104:631 (6)°, V'=30662 A% at 298 K; Z=4, D.=
2:169 g cm™3,

Potassium deuterium carbonate, KDCO;. F.W. 101-13.
Monoclinic, P2,/a, a=15-1948 (9), b=5-6307 (3), c=
37107 3) A, f=104-567 (5)°, V'=307-27 A3 at 298 K ;
Z=4, D,=2-186 gcm™3,

* Part XCI: Acta Chem. Scand. (1974). 28. In the press.
t Numbers in parentheses are the estimated standard devia-
tions on the least significant digits.

Experimental

Suitably large single crystals of KHCO; were grown
without difficulty in the same way as the X-ray crystals
(Thomas et al., 1974). The crystal used for data collec-
tion had a volume of 62:7 mm?,

Somewhat smaller KDCO; crystals (>95% D)
were obtained, again as described earlier; the largest
(volume: 9-3 mm®) was used for the data collection
after being sealed in a thin-walled quartz tube. Both
crystals had four pairs of parallel faces; their separa-
tions are given in Table 1.

Table 1. Dimensions of the crystals used

Rational boundary  Separation (in mm)

planes KHCO,; KDCO,;
(100), (100) 392 1-05
(401), (401) 212 1-83
(110), (110) 6-16 3-66
(110), (110)* 6-16 3-84

* (T10) face almost degenerate in KDCO,.

Both data sets were collected at the Swedish Atomic
Energy R2 reactor at Studsvik using a Hilger & Watts
four-circle diffractometer controlled by a PDP-8
computer. A double-monochromator system as de-
scribed by Stedman, Almgqvist, Raunio & Nilsson
(1969) was used to produce a very low-background
neutron beam with a flux of ~10° neutronscm~-2s~! at
the crystal (A=1-210 A). The diffractometer y and ¢
angles for the 400, 0k0 and 00/ reflexions in KHCO,
were: 2:20, —171-28; 87-80, 6-17 and 0:65, 113-33°,
respectively (symmetrical A-setting: Arndt & Willis,
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1966). The corresponding angles for KDCO; were:
—1-08, —141-72; 88-88, —126-15 and 0-02, 142-85°.
All reflexions of type (4,k, +/) were collected out to
sin §/A=0-693 A~! using an w-26 step-scan mode. In
all, 881 independent reflexions were measured for
KHCO; of which 752 had intensities greater than
30.0une @and were used subsequently in the refinements.
The corresponding numbers for KDCO; were 885 and
683. The intensities of three reflexions were monitored
at regular intervals throughout each of the data collec-
tions. Only small random fluctuations (~ + 36y, fOT
the least stable reflexion) were registered, implying that
no systematic corrective measures were called for.

The data sets were corrected for Lorentz and absorp-
tion effects, the latter employing experimentally deter-
mined linear absorption coefficients (KHCO,: 0-75
cm~!; KDCO;: 0-31 cm™1). The value for KHCO,
corresponds to an incoherent scattering cross-section
for hydrogen of 55 b; the value for KDCO; includes
the effect of absorption in the quartz tube. The trans-
mission factors resulting from the absorption correc-
tions were in the range 0-738-0-869 for KHCO;, and
0-922-0-972 for KDCOs;. In making the absorption
correction, a mean path-length and six geometrical
factors were calculated and saved for each reflexion
for use in the subsequent refinement of a correction for
secondary extinction (see below).
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Refinements

The full-matrix least-squares refinements made are
summarized in Table 2. In all refinements the function
minimized was Sw(|F%| —|F2)?, where w=1/a*(F?) and
o (FY) =02 ,n(FD)+(kF?»?. Values for k between 0-01
and 0-04 were tested: a value of 0-025 was used in the
final refinements for KHCO; and 0-040 for KDCO,.
The agreement factors quoted are defined by the ex-
pressions:

R(FY) =3 [IF=|F)) 2 |F,I?
R (F?)=[2, w(lF, = F [/ 2, wiF,*T".

KHCO,

The refinements can be analysed most conveniently
in three sections.

(@) Ordered model (refinement 1). Using the final
room-temperature non-hydrogen atom positions from
the earlier X-ray investigation (Thomas et al., 1974) as
starting values, a series of refinements was made
assuming an ordered structure. No evidence for
believing that this was not the case had materialized
from the earlier X-ray work, even at low temperatures.
However, inspection of the difference Fourier synthesis
maps following the ‘final’ refinement (number 1 in
Table 2) revealed a concentration of remnant scattering

and

Table 2. Summary of the refinements
R(F?) and R,(F?) are defined in the text.

Numbers of
Refinement Model refined parameters KHCO; KDCO;,
number refined R(FY) RJF®» R(FY) R.(F?

1 Ordered model: one scale 56* 0-105 0-131 0-097 0-127
factor, positional and an-
isotropic thermal parameters
for six atoms, isotropic ex-
tinction

2 As 1 but H (and D) refined 65 0-089 0-092 - -
as two independent fraction-
al atoms. Occupation num-
bers a[H] and o[H’] guessed
from difference maps
and fixed

3 As 2 but «[H] and «[H’] 67 0-088 0-092 - -
refined independently

4 As 3 but anisotropic 72 0-067 0-083 0:069 0-090
(type 1) extinction

5 As 4 but o[H]+a[H'] 71 0-067 0-083 - -
constrained to unity and
afH] refined

6 As 5 but S[H']’s con- 65 0-067 0-084 0-069 0-0917F
strained to follow B[H]’s

7 As 6 but weighting scheme 65 0-066 0-078% - -
modified

8 Extended disordered model. 55 0-082 0-147 0:079 0-115

Occupation and anisotropic
(type 1) extinction param-
eters fixed from 6 and 7
(see text)

* 57 in KDCO; as afD] also refined.
1 Final models chosen.
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power in the form of a peak of height ~0-3 protons
A-? lying roughly along the O---O hydrogen-bond
direction and ~0-7 A from the acceptor oxygen O(2).
The refinements were thus extended to examine this
apparent fractional disorder effect.

(b) Limited disorder model (refinements 2-7). It is
clear that if the hydrogen atoms of the (HCO,;);~ dimer
are subject to a disordering effect then the non-
hydrogen atoms must be equally involved. In this next
series of refinements, however, a scattering model will
be assumed in which only the hydrogen-atom sites are
affected by the disorder.

In refinement 3 the occupation number of the dom-
inant hydrogen-atom site (¢[H]) and of the weaker
hydrogen-atom site (x[H']) are refined independently.
The sum of the refined occupation numbers, «[H] +
of[H’], was 0-98 (9); the constraint «[H] +«[H'] = 1-0 was
thus applied in all subsequent refinements. A further
constraint, that the thermal vibration ellipsoid for H’
should follow that for H (i.e. §;[H]=8,[H'], B,[H]=
—PulH'], Bus[Hl=B13[H’], and fy5[H]= —f,,[H']), was
tested in refinement 6. Application of a significance
test (Hamilton, 1965; Pawley, 1970) to the R,(F?)
values from refinements S and 6 indicated that this was
a physically significant constraint.

(c) Extended disorder model (refinement 8). An
attempt was finally made to resolve in a refinement the
manner in which the non-hydrogen atoms of the
(HCO3)%~ dimer are involved in the disorder. The
problem is immediately clear. The only overt evidence
for disorder in the structure is associated with the hy-
drogen atoms; the disordered non-hydrogen atoms
approximately superpose to produce apparently
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ordered sites. Refinement of such a situation must
necessarily involve considerable correlation difficul-
ties.

In refinement 8 a model is refined (see Fig. 1) in
which all atom-sites of the dimer are disordered. The
model comprises a more and a less dominant ‘frac-
tional’ dimer, related by a twofold rotation about an
axis parallel to the b axis and passing through the
centre of symmetry of each dimer. Crude starting
values for the positions of O(2) and O(3) were cal-
culated assuming that the ‘real’ C-O(2) and C-O(3)
bonds (unbiased by disorder) were of length 1:26 and
1:35 A, respectively, but in the same directions with
respect to C as the C-O(2) and C-O(3) bonds refined
earlier (in refinement 7). The starting positions for C
and O(l) were obtained by applying small arbitrary
shifts to the y coordinates derived in refinement 7; the
x and z coordinates were left unchanged. The occupa-
tion numbers associated with [C, O(1), O(2), O(3)] and
[C, O(1), O(2), O(3)'] were constrained to follow the
occupation numbers for H and H', respectively: i.e.
o[H]=a[C]=ofO()] =o[O(2)]=a[O(3)] and o[H']=
o[C1=a[O(1)] =o[O(2)]=«[O(3")]. Furthermore, the
constraint o[H]+a[H]=1-0 was applied and the value
of a[H] fixed to the value obtained from refinement 7.
Finally the thermal vibration ellipsoids for the ‘weaker’
fractional atoms were constrained to follow those of
their more dominant counterparts, e.g. B8;,[C]=,[C’],
BulCl= = B1.[C'], Bi3[Cl=p15[C"] and f5[Cl= = Bi5[C],
elc.

The application of these constraints had the effect
that no pair of refined parameters were correlated by
more than 58% in the subsequent refinement. Al-

Fig. 1. A schematic representation of the disorder model investigated in refinement 8 (see Table 2). The upper figure depicts the
overlapping of the two fractional dimers related by a twofold rotation. The lower figures show the internal geometries of the

individual dimers in KHCO; (left) and KDCOj (right).
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though the refinement converged satisfactorily, we see
from Table 2 that the agreement factor worsened
significantly. Final parameters from this refinement
are therefore not provided here. Nevertheless, in view
of the fact that the internal geometry of the identical
‘fractional’ dimers was realistic, the resulting bond
distances and angles are included in Fig. 1.

The simple model suggested here is thus inadequate
for describing the detail of the disorder in the structure.
No more sophisticated model was investigated to
resolve the disorder. The positional and thermal
parameters from refinement 7 were therefore taken as
the most appropriate representation of the structure.
These are given in Tables 3 and 4. The final observed
and calculated structure factors are given in Table 5.
The treatment of extinction is discussed later.

KDCO,

Only features of the refinement procedure which
differ significantly from those of KHCO; will be
mentioned here.

By way of further confirmation of the disorder
found in KHCO;, a peak of height ~0-2 deuterons A ~3
was found after refinement 1 in essentially the same
position as the peak found in KHCO;. This indicates
that a similar type of disorder also affects KDCOs;.

Uncertainty as to the degree of deuteration of the
crystal demanded greater caution in applying the
occupation constraint. It was found, however, that
following refinement 4 the value of a[D]+a[D’] was
1-00 (8), suggesting that even here the constraint a[ D] +
of[D’]=1-0 was justified in the final refinement (num-
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ber 6). Resulting parameters are again given in Tables
3 and 4; final observed and calculated structure factors
are given in Table 5.

Refinement of the more extended disorder model
(number 8) again provided an inadequate description
of the disorder in the structure (see Table 2). The
internal geometry derived for the individual dimers is
again included in Fig. 1, however.

In both the KHCO; and KDCO; refinements, iso-
tropic and anisotropic (type 1 and type 2) models were
investigated to describe secondary extinction effects in
the data (Coppens & Hamilton, 1970). An anisotropic
(type 1) model was found to produce a significant im-
provement in the refinements compared with an iso-
tropic model. The final values of the six extinction
parameters are given in Table 6. A successful refine-
ment using a type 2 model was only possible after the
removal of several reflexions (~50 for KDCQO;) from
the data-sets. This model was therefore rejected as
being unrealistic.

In all refinements the values assumed for the neutron
coherent scattering amplitudes for K, H, D, C and O
were 37, —3-74, 6:67, 6:65 and 5-80 fm, respectively
(Bacon, 1972).

Computer programs

All programs used during this investigation have been
described by Lundgren (1974). The calculations were
carried out using an IBM 370/155 computer at the
Uppsala University Data Center, and the departmental
IBM 1800 computer.

Table 3. Atomic coordinates (x 10°) at 298 K

For the non-hydrogen atoms the three rows are, from the top, the neutron coordinates, the X-ray coordinates and the differences
between the neutron and X-ray coordinates.

KHCO; (refinement 7)

KDCO; (refinement 6)

x y z x y z
K 16534 (8) 2279 (19) 29524 (30) 16544 (13) 2876 (38) 29631 (51)
16533 (3) 2177 (10) 29533 (13) 16540 (3) 2850 (9) 29583 (14)

109 102 (22) -9 (32) 4 (13) 26 (39) 48 (53)

H(D) 1618 (14) 68990 (28) —44970 (52) 1649 (12) 69130 (27) —44827 (43)

(Occupation: 0-804 (7)) (Occupation: 0-877 (5))
H'(D") —2110 (61) 68091 (121) —56163 (229) —2391 (101) 67813 (205) — 56904 (349)
(Occupation: 0-196 (7)) (Occupation: 0-123 (5))

C 11952 (4) 51630 (10) —14418 (16) 11990 (6) 52115 (19) —14341 (26)
11967 (14) 51500 (13) —14363 (68) 12005 (15) 51990 (37) —14296 (66)

—15(15) 130 (17) —55(70) —15 (16) 125 (42) —45 (68)

o) 19342 (5) 52999 (14) 9465 (21) 19358 (8) 53868 (27) 9426 (36)
19329 (11) 52915 (27) 9482 (55) 19350 (11) 53839 (31) 9399 (54)

13 (12) 84 (31) —17 (59) 8 (14) 29 (41) 27 (65)

0Q) 8230 (5) 32072 (13) —27325(21) 8327 (8) 32640 (25) —27232(32)
8221 (9) 31998 (31) —27353 (42) 8330 (10) 32577 (30) —27233 (47)

9(11) 74 (34) 28 (47) -3713) 63 (40) 1(57)

0Q@3) 7748 (5) 71816 (13) —27376 (22) 7718 (8) 72298 (26) —27289 (33)
7761 (9) 71772 (27) —27448 (43) 7721 (11) 72337 (29) —27330 (47)

—-13(11) 44 (30) 72 (49) -3 (14 39 (39) 41 (58)

AC30B-2
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General. A general stereoscopic view of the KHCO,
structure derived from refinement 7 is given in Fig. 2.

The form of the temperature factor is: exp [—(BuA*+ -+ +2B,hk+ .. .)]. For the non-hydrogen atoms the three rows are,
from the top, the neutron parameters, the X-ray parameters and the differences between the neutron and X-ray parameters. The
r.m.s. components (R; x 10° A) of thermal displacement from the neutron study (first row) are also given along with the X-ray

(a) KHCO,

K

H/

o(1)

0O(2)

0(3)

(b) KDCO;,

K

o(1)

0(2)

0o(3)
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Discussion

Bu
27 (1)
26 (1)

1Q2)

31 ()
31 (H*

19 (1)
19 (1)
02

22 (1)
21 (D)
1(2)

27 (1)
26 (1)
1(2)

26 (1)

25 (1)
1)

Bu
30 (1)
26 (1)

42

33 ()
33(D)*

21 (1)
19(1)
2(2)

25 (1)
21 (1)
4(2)

29 (1)
27 (D)
2(2)

28 (1)
25 (1)
3(2

Relevant bond distances and angles for both KHCO,
and KDCO; are given in Table 7 and the geometries
of the (HCO;)5~ and (DCO,);~ dimers are illustrated
in Fig. 3 together with the corresponding values from

Table 4. Anisotropic thermal parameters ( x 109

Ji 9
167 3)
163 (3)

4 (4)

180 (4)
180 (4)

144 (2)
144 (7)
07N

225 (3)
220 (6)
5(M

142 (2)
143 (5)
—-1(5)

142 (2)

140 (5)
2(5)

B2
174 (7)
129 (2)

45 (7)

171 (5)
171 (5)

145 (4)
125 (7)
20 (8)

220 (5)
198 (6)
22 (8)

150 (5)
110 (5)
40 (7)

141 (4)
104 (5)
37(7)

* Values constrained to follow those for H (and D); see text.

values for comparison.

Bss Bz Bis
358 (D) 1(1) 9 (1)
412 (9) 2(1) 15 (1)
=541 -1(2) -6()

623 (15) 1(1) 0@3)
623 (15) —1(D 03

337.(5) -—-1(H 9 (1)
384 (24) (VXY 26 (3)
—47(25) —-1@2) —-17(3)

478 (6) —1(1) —=11(1)
576 (18) 1 0(3)
—-98(19%9 -2(2) -11(3)

490 (6) 2() —=11(D
554 (15) 2( -1
—64(16) 0(2) —-10(2)

525(6) —2(1) —10(1)
618 (16) —3 (1) —2(1)
-93(17) 1) -8(@Q)

ﬂss Blz ﬁl&
400 (12)  1(2) 13 (3)
463 (7) 2(1) 6 (1)
—63(14) —-1(2 7(3)

629 (12) 2(1) 6(3)
629 (12) —-2(D 6 (3)

357(7)  —1(1)  12(Q1)
385(23) -1(2 16(3)
-28(24) 0 -403)

495 (9) 1(1) —8(2)
588 (18) 12y —-12(3)
—93 (20) 0(2) 4@

517 (9) 1) =52
611 (16) 1L(1)y —=5(3)
—-94 (19) 02 0@

561 (10) —1 (D) —-8(2)
666 (16) -3 (1) -—-12(Q)
-105(19) 22 4@

B
-1(3)

2(1)
-3

17 (5)
=17 (5)

—4(2)
5 (6)
—9(6)

—-14 (3)
—8(6)
-6(7)

—-11(2)
—13(5)
2(5

3(2)
8 (6)
—5(6)

Bas
=2(7N
-1 (2
=1

-3(5
3 (5

-8(3)
-2(7)
-6

=21 (5)
—14 (6)
—7(8

—10(5)
~11(6)
1(8)

—1(5
0(6)
-1(8)

R,

149 (2)
158 (1)

168 (2)
168 (2)

138 (1)
140 (3)

139 (1)
146 (3)

149 (1)
151 3)

150 (1)
149 (3)

R,
158 (3)
144 (1)

165 (2)
165 (2)

144 (2)
141 (4)

148 (2)
140 (3)

155 (2)
132 (3)

150 (2)
129 (3)

R,
164 (2)
162 (1)

174 (2)
174 (2)

152 (1)
152 (3)

190 (1)
187 (3)

151 (1)
157 (2)

152 (1)
157 (2)

R,
167 (3)
157 (1)

178 (3)
178 (3)

153 (2)
145 (4)

187 (2)
178 (3)

158 (2)
158 (3)

157 (2)
153 (3)

Ry

184 (1)
177 (1)

226 (2)
226 (2)

160 (1)
159 (5)

205 (1)
209 (3)

212 (1)
211 (2)

214 (1)
219 (2)

Ry
189 (2)
192 (1)

223 (2)
223 (2)

164 (1)
162 (4)

209 (2)
219 (3)

212 (2)
222 (3)

220 (2)
232 (3)
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Table 5. Observed and calculated structure factors for (@) KHCO; and (b)) KDCO; at 298 K

’

factor multiplying F,.

ich F?<3¢(F?)are marked with an asterisk

for wh

the extinction correction

10Ns

k, I, 100|F,|, 100|F.| and 100 E. Reflex

der

, in or
these were given zero weight in the refinement. E is

The five columns are

(a)
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the room-temperature X-ray study. The planarity of
the dimer in KHCO; and KDCO; is summarized in
Table 8.

It will be noted from Table 3 that the X-ray- and
neutron-determined non-hydrogen atom positions
agree well; although the maximum disagreement is

HYDROGEN BOND STUDIES. XCII

~ 7o [in (C) for KHCO;), the average difference is
only 1-30. Discrepancies of this magnitude are no more
than are to be expected in view of the fundamental
difference between the X-ray and neutron diffraction
methods (see Coppens, 1970). The slightly larger
discrepancies between the anisotropic thermal param-

Table 6. Refined anisotropic (type 1) extinction parameters (Z;;) as defined by Coppens & Hamilton (1970)

Z 5 Z 5 Z 3 Z 1 Z3s Zn
KHCO; 1-05 (17) 0-42 (5) 1-52 (20) 1-05 (16) —0:07 (29) —0-04 (16)
KDCO; 303 (49) 94 (1-2) 227 (4:0) 165 (4:2) —12-3 (6+6) —4-1(3-3)

) Jo X % %
Q qs.\, "."’f,' o
{ i 4 [ e ®)
! .-’.-‘,‘:t.
‘Q,. X X
6 X

A

Fig. 2. A stereoscopic illustration of the KHCO; structure. Note that only the ‘dominant’ hydrogen atom site is shown here. The
thermal vibration ellipsoids are drawn to include 50 % probability.

Fig. 3. The internal geometries of the disordered (HCOs);~ and (DCO;)3~ ions as obtained from refinements 7 (KHCO;) and
6 (KDCO,). The X-ray values (Thomas et al., 1974) are also included for comparison below the neutron values. The figure has
been simplified by drawing the centrosymmetrically related H and D atoms as dashed circles. The thermal vibration ellipsoids
for the atoms are otherwise drawn to include 50 % probability.
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eters (Table 4) observed with X-rays and neutrons
(maximum: ~ 7¢, mean: 2-0g) are again no more than
an expression of the differences in the methods.
Similar discrepancies were found in the case of «-
glycine (Almlof, Kvick & Thomas, 1973). A point to
observe here is that the greatest disagreement is found
in the B3 values, with the X-ray values systematically
larger. This is probably a consequence of the X-ray
data being collected about the ¢ axis using a Weissen-
berg diffractometer.

We can conclude therefore that, as far as the non-
hydrogen atoms are concerned, neither the neutron

Table 7. Interatomic distances (A) and angles (°) at
298 K

The X-ray-determined values are included for compatison. The
first three digits of the identifying suffices on atoms not in the
asymmetric unit refer to a lattice translation, e.g. 564 implies
the operation (x,y + 1,z— 1); the fourth digit specifies one of the
symmetry operations:
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Table 8. The planarity of the (HCO;)5~ dimer; values
obtained from the X-ray study are included for com-
parison
The parallel planes through the oxygen atoms of each HCO;™

ion are taken as references; the notation is defined in the fol-
lowing schematic figure:

(oz')
01'
T; c / H‘ c'
=T I _______
o1 8 02 \
(03)
KHCO; KDCO;
Neutron X-ray Neutron X-ray
4(3) 0214 (1) 0222 (3) 0214 (1) 0219 (3)
D 0:077 2) 0:09 (3) 0-:072 (2) 0-03 (3)
(D) 0-107 (9) - 0-109 (16) -
S 0-003 (1) 0-004 (3) 0-004 (1) 0-005 (3)
a(°)* 47 (1) 49 (1) 47 (1) 4-8 (1)

* o is the angle between the plane defined by 0O(2),0(3),

I:
2 dtx i s 0(3),0(2") and the reference plane through O(1),0(2),0(3)
30 _x =y -z or O(1’),0(2),0(3").
4 d-xf+y, —z
(@) K% ion
KHCO KDCO _ H H F
Neutron 3X-ray Neutron SX-ray nor the X-ray study has given any obvious indication
of disorder. The non-hydrogen atom parameters
K---0(1) 3-008 (1) 3-008 (2) 3-025 (2) 3-024 (2) di fl he disorder in th
K- -O(Dssss 2931 (1) 2929 (2) 2919 (2) 2919 (2) clearly a ]l{St to camournage t € disorder 1n the struc-
K- -O(l)sess  2-873 (1) 2:875(2) 2873 (2) 2873 (2) ture. The discovery of a fractional disorder can there-
E' : '885464 %gzg 8; %gg% 8; %%‘g g; %ggg % fore be attributed entirely to the superior ability of the
K - O(2)sss:  2:825(1) 2:826(2)  2:817(2) 2:816(2) neutron to detect hydrogen (and to an even greater
K- OB)sas 2784 (1) 2-784 (2) 2793 (2) 2790 (2) €xtent deuterium) atoms. This is an important point
K- O@3)ssr  2:890 (1) 2-885(2) 2:898 (2) 2895 (2) remembering that the majority of documented hy-
K---0 2:843 2:843 2845 2:844 drogen-bonded structures are X-ray determined.
Table 7 (cont.)
(b) CO; group
KHCO; KDCO;
Neutron X-ray Neutron X-ray
C-0(1) 1-244 (1) 1-240 (3) 1-243 (1) 1-239 (3)
C-0(2) 1:274 (1) 1-274 (2) 1-268 (2) 1:266 (3)
C-0(3) 1-332 (1) 1-337 (2) 1:337 (2) 1:346 (3)
C-0 1-283 1-284 1-283 1-284
0O(1)-C-0(2) 123-75 (6) 124-12 (17) 124-62 (12) 125-05 (20)
0(1)-C-0(3) 117-89 (6) 117-74 (16) 117-19 (12) 116-82 (19)
0(2)-C-0(3) 118-35 (6) 118-14 (18) 118-18 (11) 118-12 (20)
(¢) Hydrogen bond
0(3) - -0(2)sess 2587 (1) 2:585 (2) 2607 (2) 2607 (2)
0(3)—H 1-005 (2) 1-09 (3) 1:002 (2) 095 (4)
Hewoeee 0(2)s613 1-587 (2) 1-50 (3) 1-610 (2) 1-66 (4)
O(3)—-H: -+ 0Q)sees 17302 (15) 1698 (5°7) 17321 (17) 1706 (4-4)
0(2)5643_H 0-:975 (9) - 0-945 (15) -
""" 3 1-617 (9) - 1-668 (16) -
0(2)5543—H ----- 0(@3) 172-61 (6) - 172:21 (11) -
C 0Q@3) + + - O2)s643 116-56 (5) 116-67 (12) 115-63 (9) 115-54 (13)
0(@3)--- -0(2)5543—C5643 124-82 (5) 124-90 (12) 125-93 (10) 126-05 (14)
C O(3) 112-32 (11) 110-8 (3-3) 111-50 (16) 110-6 (3-2)
Heevooo 0(2)5643—C5543 122-11 (8) 1206 (2:4) 123-33 (12) 123-0 (1-8)
Cseas O(2)s645-H 120-4 (4) - 121-2 (7) -
H - 0@3) C 1140 (3) - 113-1 4) -
H------ H’ 0-613 (9) - 0-667 (14) -
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The dimers. The final refined values for the occupa-
tion numbers of H and D were 0-804 (7) and 0:877 (5),
respectively. This would suggest that, although the
(HCO,);~ and (DCO;)3~ dimers are affected by the
same general form of disordering, the degree of dis-
ordering is different in the two crystals studied. It is
clearly a dubious extrapolation, however, to suggest
that this is true for the KHCO; and KDCO, structures
in general. Let us analyse the situation in a little more
detail.

Intuitively we would expect the source of the dis-
order to be an orientational disordering of the entire
(HCO3)3~ and (DCO,)3~ dimers in the lattice. The
near-planar symmetrical shape of the dimer suggests
that stacking ‘mistakes’ of this type could occur with-
out introducing undue local strain into the crystal
structure. The alternative disordering mechanism, syn-
chronous proton jumps across the ~2:60 A hydrogen
bonds within an individual dimer, must be regarded as
highly unlikely in the present case. It is also relevant
to recall the long-held suspicion that carboxyl dimers
are susceptible to an insidious fractional disordering
tendency. Currie, Speakman & Curry (1967) cite as
evidence for this the observation that differences be-
tween C=0O carbonyl and C-OH hydroxyl distances
fall in the range 0-04-0-12 A. More recently Bernstein
& Leiserowitz (1972) have deduced that the structure
of trans,trans-muconic acid contains a statistical dis-
order (not 50%-50%) within one of its carboxyl
groups.

Let us therefore make the simplifying assumption
(the validity of which we have made no attempt to
examine here) that the disorder in the dimers takes the
form of a statistical overlap of just swo differently
oriented dimers, i.e. there exists one discrete dimeric
orientation for each of the two observed H (and D)
positions. It would therefore follow that, in the event
of a 50%-50% disordering, the apparent C-O(2) and
C-O(3) distances would be equal. The observation
that (a) extremely consistent correspondence is found
between X-ray- and neutron-determined C-O(2) and
C-0O(3) distances (see Table 7 and Fig. 3) in KHCO,
and KDCO;, and (b) that these distances differ signif-
icantly (by ~0-07 A) would suggest a general tendency
for each of the structures to comprise a superposition
of a predominant and a subordinate orientation. From
this experiment alone, however, it is of course not
possible to establish that the significantly different
degrees of disordering deduced for KHCO; and
KDCO; have a more general significance, e.g. that the
degree of ordering is related to the degree of deutera-
tion in some systematic way. One point immediately
suggests itself, however. It could well be that the small
systematic structural differences between KHCO; and
KDCO; observed at all three temperatures in the X-ray
study (especially in the C-O(2) and C-O(3) bond
lengths: see Fig. 4) were artifacts of a differing degree
of disordering in the KHCO; and KDCO; crystals
used. Differences of the same order of magnitude are

HYDROGEN BOND STUDIES. XCII

also found in the present room-temperature neutron
study.

In the light of this possibility, it is clearly extremely
difficult to ascertain the geometry of an individual
dimer, if indeed a discrete characteristic geometry
exists for an individual dimer in this type of situation.
Nevertheless, an attempt was made (refinement 8) to
discover how such a hypothetical dimer might look.
The model refined was described earlier. Although
satisfactory convergence was obtained and realistic
internal geometries resulted (see Fig. 1), the poor
agreement factors implied that the model was unsatis-
factory in describing the detail of the disorder in the
structure.

Isotope effect. It is inevitable from the above that
doubts must be raised as to the meaningfulness of data
obtained on the isotope effect in view of the presence
of disorder in the structure. We observe that the change
in O(2)---0(3) length on deuteration (Table 7)
[4(D-H)= +0-020 (2) A] is in good agreement with
the X-ray result of +0-022 (3) A at the same temper-
ature.

Two conditions must be fulfilled, however, if the
results obtained here and from the earlier X-ray study
of the temperature dependence of the isotope effect
can be taken as giving a representative picture or the
‘true’ situation within an individual dimer. The O---O

1.400 - 1.400
I C—-03
o= - —. 1
\\\
— ~ -1 1.350
1.350 -
! e
A A
-
<
L
°| 130 - c_o ~ 1.300
o

---H
o C—O2 ‘O/z._b 4
8:~__ ," s
~~‘ /’
~ -0
1.250 c-o1 H 1.250
== = "=<D-
T T T T T
100 150 200 250 300
T (K)

Fig. 4. The variation in the C-O distances in KHCO; (solid
lines) and KDCO; (dashed lines) with temperature, as ob-
served by X-ray diffraction. The room-temperature values
obtained here are included for comparison,
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bonds must superpose in the structure in such a way
that a valid measure of the difference between O- - -O
lengths in KHCO; and KDCO; is obtained. The degree
of disordering must also be invariant with temperature.
These would both appear reasonable assumptions if the
disorder is of the form suggested above.

Summary

Convincing evidence has thus emerged to indicate the
presence of a roughly 4:1 statistical disordering of the
(HCO,);~ and (DCO5);~ dimers. Despite the fact that
the refined occupation numbers of the (assumed) two
dimeric orientations indicated a significantly greater
percentage of the more dominant orientation in
KDCO,, it is not possible to ascertain from this work
alone the extent to which the degree of disordering in
each compound is specimen dependent. It is clear
therefore that the present study can usefully be ex-
tended in several directions, e.g. low-temperature
neutron diffraction studies, comparative studies using
different crystals and different degrees of deuteration,
disorder diffuse scattering studies (especially of KDCO;
using neutrons).

The authors would like to express their appreciation
to the other members of the Hydrogen Bond Group in
Uppsala who have assisted in this work. The Swedish
Natural Science Research Council and the Tricenten-
nial Fund of the Bank of Sweden have provided the
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Struktur des borreichen Borphosphids

VON E.AMBERGER UND P.A.RAUH
Institut fiir Anorganische Chemie der Universitit, D-8000 Miinchen 2, Meiserstrasse 1, Deutschland (BRD)

(Eingegangen am 8. Mdrz 1974; angenommen am 14. Juni 1974)

During the reduction of gaseous BBr; and PBr; with H, boron-rich boron phosphide with a variable
content of phosphorus is deposited on a tantalum or boron nitride substrate at 900-1800°C. X-ray
data of an untwinned single crystal with the formula B,,(P;.36Bo.cs) show a rhombohedral cell, space
group R3m witha=5-2310(3) a=69°30"36" (10”) (hexagonalsetting: a= 5-964;c=11-814 A), Rvalue=
0-040, one formula unit in the cell. The structure derives from the a-rhombohedral boron (a=5-06 A;
a=158:1°) with By, icosahedra on each corner. The long hole in the centre of the cell lies in line with the
long cell diagonal, and is fully occupied with two single atoms, phosphorus and boron, in statistical distri-
bution. The two single atoms have nearly ideal tetrahedral environments. Each is bonded to three B,;
icosahedra and to the other single atom. The model is not in accordance with the model of ‘B;;Py’
(hex.: a=5984; c=11-850 A) with a three-atom chain P-B-P in the hole (Spinar & Wang, Acta Cryst.

(1962). 15, 1048-1049).

Einleitung

In der Literatur wird verschiedentlich iiber borreiche
Bor-Phosphorphasen berichtet, so von Matkovich
(1961a, b) liber B,;P,, Matkovich & Giese (1965) und

Peng Nien Chao & Chin-chi Mo (1963) sowie Bur-
mester & Green (1967) iiber B,;,P, bzw. BsP, ausserdem
Gruber (1966) iiber Bg. .. ,0P. Matkovich (196la, b)
erhielt das Borphosphid durch Zusammenschmelzen
von amorphem Bor und Aluminiumphosphid bei 1400~



